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Abstract 
 

Scientists have relied on the Kepler scientific workflow system 

to help them automate experiments across many different 

fields using distributed computing platforms. An assigned 

director oversees the execution of a process in Kepler. It is the 

responsibility of the user to provide the exact resources in the 

realm of computing that carry out the workflow's duties. 

Scientists' technical burdens may be further reduced with the 

help of a workflow scheduler that can distribute workflow 

tasks across available resources. We evaluate numerous cloud 

workflow scheduling methods to determine what data must be 

exposed for a scheduler to successfully plan for the execution 

of a Kepler process in the cloud. We explain the value by 

discussing the benefits to workflow scheduling of various 

forms of information relating to workflow tasks, cloud 

resources, and cloud providers. 

 

1 Introduction 
 

Management solutions for scientific workflows, 

like Kepler [1], have been used to make science 

more accessible by giving researchers the means to 

set up and monitor automated runs of their 

calculations. Workflows are able to be executed by 

these systems either locally or on the grid, a 

distributed computing infrastructure. Offers the 

supercomputer power required for the complex 

calculations inherent in scientific applications [2]. 

With the advent of cloud computing, it is now 

feasible to run scientific processes on cloud 

resources [3], which may be provisioned, on 

demand and therefore reduce the need for costly 

upfront hardware. Research into the execution of 

processes in a cloud computing environment has 

increased in recent years due to the many 

advantages of doing so. A scheduler, which 

determines the assignment of workflow tasks 

(called actors in Kepler) to cloud resources, is a 

crucial component of cloud-based process 

execution. Multiple "directors" may be applied to a 

Kepler process to manage its execution [4]. Users 

must manually designate the computing resources 

on which to run actors, since Kepler's directors do 

not automate this process. Kepler may need a 

scheduler in order to free up scientists from 

technological hassles. In this research, we analyze 

current cloud workflow scheduling methods to 

determine the sorts of data that should be sent by 

the Kepler environment to its scheduler in order to 

facilitate the construction of this scheduler. 

Workflow scheduling in the cloud environment 

differs from grid scheduling in that it must account 

for challenges unique to cloud computing. 

Schedulers in the cloud, for instance, must take into 

account more than just the time it takes to complete 

a process execution before a fee is charged. Grid 

resources are more varied and are not controlled by 

users, while cloud resources, in this instance virtual 

machines, are more uniform and are depending on 

the request from users (or from the schedulers) [3]. 

As a result, these changes need more data for 

scheduling than was previously necessary. A 

variety of cloud workflow scheduling methods is 

examined in this research, all of which make use of 

data unique to the cloud computing setting. Some 

methods (and the data they depend on) may 

become obsolete as cloud computing and cloud 

service providers continue to develop. So, we also 

talk about and defend the significance of each piece 

of data we find in the contemporary cloud 

computing setting. This paper will have the 

following outline. Methods for planning workflows 

in the cloud are discussed in Section 2. The third 

section highlights and describes how this data is 

used to solve cloud-specific problems. The last 

section of the study discusses the implications of 

our findings for future research. 

2 Cloud Workflow Scheduling 

Techniques 
Prior to the advent of cloud computing, scientific 

workflows were often implemented in the grid, and 

many years of research and development went into 

grid workflow scheduling, yielding a variety of 

methodologies. However, it is possible that these 

methods can't be used to schedule operations in the 

cloud due to the dissimilarities between the grid 

and the cloud environment. That's why they're 

focusing on cloud-based process scheduling 

instead. In light of the constant development of 

cloud infrastructure and cloud-based software, new 

scheduling methods have emerged. This is because 

the scheduling procedure now requires more data 
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about processes and cloud resources. Scheduling 

tasks for a grid-based workflow typically depends 

on three metrics: task execution time, grid resource 

wait time, and file staging or data transfer time [5]. 

Specific problems, such as resource competition 

[6], fault tolerance [7], and dependability [8], may 

need additional metrics or information, which may 

be used by various strategies. Users are paid for 

using the cloud's shared pool of computing 

resources, which may include both physical servers 

and virtual machines, on an as-needed basis. With 

the entire execution cost now becoming a more 

crucial statistic, the three traditional KPIs are no 

longer adequate. 

In order to determine what scheduling data is 

unique to cloud computing, this section examines 

numerous cloud workflow scheduling strategies. In 

order to show how various methods have 

developed through time, we provide them in 

chronological sequence. Fewer strategies address 

execution cost in utility grid, although several 

concentrate on lowering make span in grid 

workflow scheduling. One such method was 

presented by Yu et al. [9], and it involves splitting a 

workflow into sub-processes based on 

synchronization tasks and then allocating a 

common deadline to each of these sub-processes. 

As a result, we aim to keep each partition's deadline 

in mind while minimizing its associated costs. The 

data transport and grid resource utilization costs are 

taken into account in this early method. Prior to the 

advent of cloud computing, scientific workflows 

were often implemented in the grid, and many 

years of research and development went into grid 

workflow scheduling, yielding a variety of 

methodologies. However, it is possible that these 

methods can't be used to schedule operations in the 

cloud due to the dissimilarities between the grid 

and the cloud environment. That's why they're 

focusing on cloud-based process scheduling 

instead. In light of the constant development of 

cloud infrastructure and cloud-based software, new 

scheduling methods have emerged. This is because 

the scheduling procedure now requires more data 

about processes and cloud resources. Scheduling 

tasks for a grid-based workflow typically depends 

on three metrics: task execution time, grid resource 

wait time, and file staging or data transfer time [5]. 

Specific problems, such as resource competition 

[6], fault tolerance [7], and dependability [8], may 

need additional metrics or information, which may 

be used by various strategies. Users are paid for 

using the cloud's shared pool of computing 

resources, which may include both physical servers 

and virtual machines, on an as-needed basis. With 

the entire execution cost now becoming a more 

crucial statistic, the three traditional KPIs are no 

longer adequate. In order to determine what 

scheduling data is unique to cloud computing, this 

section examines numerous cloud workflow 

scheduling strategies. In order to show how various 

methods have developed through time, we provide 

them in chronological sequence. Fewer strategies 

address execution cost in utility grid, although 

several concentrate on lowering make span in grid 

workflow scheduling. One such method was 

presented by Yu et al. [9], and it involves splitting a 

workflow into sub-processes based on 

synchronization tasks and then allocating a 

common deadline to each of these sub-processes. 

As a result, we aim to keep each partition's deadline 

in mind while minimizing its associated costs. The 

data transport and grid resource utilization costs are 

taken into account in this early method. 

Bettencourt and Madeira [14] devised the "HCOC" 

method in 2011 to plan cloud processes within 

deadlines while decreasing compute cost. The 

method is based on a hybrid cloud architecture, 

which consists of both a private cloud with diverse 

resources and a public cloud (unlimited) resources. 

As a first step in developing a strategy for the 

private cloud, we use "PCH," a grid workflow 

scheduling approach [15] that accounts for 

execution time and data transfer. If the current 

schedule seems like it may miss the deadline, a 

rescheduling event is triggered to choose and 

redistribute workloads to public cloud resources. 

When choosing resources from the public cloud, 

we look at things like cost, performance, and the 

number of available CPU cores. Cloud resources 

that are idle while waiting for incoming data to be 

sent incur an opportunity cost, as the authors point 

out [16]. However, this was an oversight in the 

HCOC algorithm. In Table 1, we compare and 

contrast the various cloud workflow scheduling 

strategies and the cloud execution model they 

recommend. Due to their importance in 

determining both cost and make span, the metrics 

of task execution time, compute cost, and data 

transfer time are widely used throughout the 

majority of the approaches shown here. The next 

section discusses the significance of the remaining 

five to contemporary cloud computing. 
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Table 1: Summary of the information utilized by 

cloud workflow scheduling techniques 

3 Discussion on Information Utilized in 

Workflow Scheduling 
Not as much focus has been placed on the fourth 

statistic, which is the cost of moving data into and 

out of the cloud, as there has been on the other 

three. The assumption made by each method may 

determine whether or not this data is included. 

Infrastructure-as-a- Windows Azure [22] and 

Amazon Data transfers to and from EC2 [20] cloud 

data centres are cheap. Assuming that a process 

execution only occurs in a single cloud, this cost 

will be spent mostly when taking data back out of a 

cloud data centre once the workflow has 

completed. Because data may need to be 

transported from cloud centre to private resources 

during execution and vice versa, the cost of 

executing a workflow in a hybrid cloud might vary 

depending on the data dependencies between jobs. 

Costs associated with transporting data across 

providers become more convoluted when operating 

in an "interclub" [23] environment, when a process 

is completed employing resources from numerous 

cloud providers. However, the volume of data 

delivered during an operation might also affect the 

final price. Therefore, the cost of data transmission 

must be included into the scheduling mechanism of 

a system that primarily supports data-intensive 

activities. 

Two of the more complex methods discussed in 

this study (PBTS and IC-PCP) account for the time 

value of money spent on virtual machines. If the 

majority of the jobs in a workflow have execution 

periods that are less than the charging period, then 

this is an important decision to make. In such case, 

the assigned VMs result in underutilization and 

greater costs for customers during non-peak times 

[17, 21]. In contrast, as of the year 2013, both 

Windows Azure and Google Compute Engine 

impose a per-minute fee on their virtual machines. 

Due to the reduced charge duration, the benefits of 

taking charge period into account [21] are less, and 

it may not be worthwhile to build such 

sophisticated scheduling algorithms. However, 

other cloud providers, such Amazon EC2, continue 

to charge customers on an hourly basis for their 

service. Until the majority of cloud providers 

switch to a shorter billing cycle, thinking about the 

charge term may be helpful. Shorter billing cycles 

make it more convenient to assign a virtual 

machine for a limited time to complete a modest 

activity at a lower overall cost. However, this might 

result in unnecessary costs. The time and resources 

needed to boot up a virtual machine are factors to 

think about, as noted in [3, 16, and 17]. Despite the 

fact that a virtual machine's image may be stored in 

the cloud, it still needs some time to boot the 

operating system before it can be used to perform a 

job [3]. There may also be a period of idle waiting 

as the machine awaits the transmission of input 

data before execution can begin [16]. These 

complications add unnecessary expense and delay 

to an operation. When deciding whether to create a 

new virtual machine (in order to achieve a 

deadline) or to terminate one, the scheduler must 

take this overhead into account (to reduce cost 

when it is no longer required). 

4 Information Requirements for Cloud 

Workflow Scheduler 
Ultimately, the execution time, data transfer time, 

and compute cost is the three most important 

metrics that must be supplied for a Kepler system 

workflow scheduler implementation in order to 

estimate cost and make span. In addition to 

equating execution time with virtual machine ratio 

of performance to job size (in MIPS) and overall 

task size (in millions of instructions) [16]. A 

second option is for the scheduler to keep track of 

the amount of time it takes to complete each job on 

each virtual machine internally (or as part of 

provenance) in order to calculate estimated task 

completion times. Schedulers may provide 

conservative estimates of transfer times by 

recording information about the amount of the data 

being transmitted and the capacity of network 

connections [6]. To aid in planning of data-

intensive operations, it is helpful to have the costs 

associated with transporting data to and from each 

cloud provider in each availability zone (or area). 

The scheduler needs access to the number of cores 

set for each virtual machine instance type in order 

to take advantage of workflow parallelism. To 

facilitate a distributed programming paradigm, it is 

necessary to have as many virtual machines as the 

number of tasks. Users may set this value in a 

parameter associated with the task actor. Although 

not explicitly addressed in any study provided here, 

it is important to keep tabs on the time it takes to 

start various kinds of virtual machines in order to 

rationalize resource allocation and release [3]. The 

scheduler is a potential location for including this 

monitoring. Finally, we think that it may not be 

essential throughout the use fee time. As more 

cloud service providers provide shorter billing 

cycles, the benefits of this feature may no longer be 

sufficient to cover the costs associated with 

developing and implementing it. 

5 Conclusions and Future Work 

In this research, we analyze the requirements of a 

workflow scheduler and draw conclusions on what 

the Keller system environment should provide. The 

value of various forms of data in the present-day 

environment of cloud computing is examined. 

Based on our work developing a prototype 

scheduler in the Kepler-based tool "Nimrod/K" [6, 

24, 25], "Nimrod Director" [26] uses this scheduler 

to take care of scheduling process actors onto 

computational resources. A cloud-based process 

scheduler may be implemented in the Kepler 
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system, and this may be a viable alternative. The 

prototype scheduler, however, was designed for a 

grid environment and hence did not take into 

account this novel characteristic of cloud 

computing. Furthermore, it is possible that the 

Kepler system may not immediately provide access 

to some of the information described in this work, 

such as compute cost, data transmission cost, and 

the number of cores in each virtual machine. In the 

real implementation, it may be necessary to add an 

extra part to collect such data. Several approaches, 

including those discussed in this research, makes 

assumptions about the information and concerns 

unique to the workflow and cloud execution 

settings, such as task need and user interaction [10]. 

As a follow-up, we're doing a thorough literature 

review to compile a taxonomy that may guide 

future innovation in cloud workflow scheduling 

methods and tools. 
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