
IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

Vol.14, Issue No 2, 2024

874

Analyzing Scheduling Information Requirements for Deploying

Kepler Workflows on the Cloud

Mr.Diddela Jagan Mohan1., M.Bhavana 2

 1 Assistant Professor, Department of CSE, Malla Reddy College of Engineering for Women.,

Maisammaguda., Medchal., TS, India

2, B.Tech CSE (20RG1A05M6),

Malla Reddy College of Engineering for Women., Maisammaguda., Medchal., TS, India

Abstract

Scientists have relied on the Kepler scientific workflow system

to help them automate experiments across many different

fields using distributed computing platforms. An assigned

director oversees the execution of a process in Kepler. It is the

responsibility of the user to provide the exact resources in the

realm of computing that carry out the workflow's duties.

Scientists' technical burdens may be further reduced with the

help of a workflow scheduler that can distribute workflow

tasks across available resources. We evaluate numerous cloud

workflow scheduling methods to determine what data must be

exposed for a scheduler to successfully plan for the execution

of a Kepler process in the cloud. We explain the value by

discussing the benefits to workflow scheduling of various

forms of information relating to workflow tasks, cloud

resources, and cloud providers.

1 Introduction

Management solutions for scientific workflows,

like Kepler [1], have been used to make science

more accessible by giving researchers the means to

set up and monitor automated runs of their

calculations. Workflows are able to be executed by

these systems either locally or on the grid, a

distributed computing infrastructure. Offers the

supercomputer power required for the complex

calculations inherent in scientific applications [2].

With the advent of cloud computing, it is now

feasible to run scientific processes on cloud

resources [3], which may be provisioned, on

demand and therefore reduce the need for costly

upfront hardware. Research into the execution of

processes in a cloud computing environment has

increased in recent years due to the many

advantages of doing so. A scheduler, which

determines the assignment of workflow tasks

(called actors in Kepler) to cloud resources, is a

crucial component of cloud-based process

execution. Multiple "directors" may be applied to a

Kepler process to manage its execution [4]. Users

must manually designate the computing resources

on which to run actors, since Kepler's directors do

not automate this process. Kepler may need a

scheduler in order to free up scientists from

technological hassles. In this research, we analyze

current cloud workflow scheduling methods to

determine the sorts of data that should be sent by

the Kepler environment to its scheduler in order to

facilitate the construction of this scheduler.

Workflow scheduling in the cloud environment

differs from grid scheduling in that it must account

for challenges unique to cloud computing.

Schedulers in the cloud, for instance, must take into

account more than just the time it takes to complete

a process execution before a fee is charged. Grid

resources are more varied and are not controlled by

users, while cloud resources, in this instance virtual

machines, are more uniform and are depending on

the request from users (or from the schedulers) [3].

As a result, these changes need more data for

scheduling than was previously necessary. A

variety of cloud workflow scheduling methods is

examined in this research, all of which make use of

data unique to the cloud computing setting. Some

methods (and the data they depend on) may

become obsolete as cloud computing and cloud

service providers continue to develop. So, we also

talk about and defend the significance of each piece

of data we find in the contemporary cloud

computing setting. This paper will have the

following outline. Methods for planning workflows

in the cloud are discussed in Section 2. The third

section highlights and describes how this data is

used to solve cloud-specific problems. The last

section of the study discusses the implications of

our findings for future research.

2 Cloud Workflow Scheduling

Techniques
Prior to the advent of cloud computing, scientific

workflows were often implemented in the grid, and

many years of research and development went into

grid workflow scheduling, yielding a variety of

methodologies. However, it is possible that these

methods can't be used to schedule operations in the

cloud due to the dissimilarities between the grid

and the cloud environment. That's why they're

focusing on cloud-based process scheduling

instead. In light of the constant development of

cloud infrastructure and cloud-based software, new

scheduling methods have emerged. This is because

the scheduling procedure now requires more data

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

Vol.14, Issue No 2, 2024

875

about processes and cloud resources. Scheduling

tasks for a grid-based workflow typically depends

on three metrics: task execution time, grid resource

wait time, and file staging or data transfer time [5].

Specific problems, such as resource competition

[6], fault tolerance [7], and dependability [8], may

need additional metrics or information, which may

be used by various strategies. Users are paid for

using the cloud's shared pool of computing

resources, which may include both physical servers

and virtual machines, on an as-needed basis. With

the entire execution cost now becoming a more

crucial statistic, the three traditional KPIs are no

longer adequate.

In order to determine what scheduling data is

unique to cloud computing, this section examines

numerous cloud workflow scheduling strategies. In

order to show how various methods have

developed through time, we provide them in

chronological sequence. Fewer strategies address

execution cost in utility grid, although several

concentrate on lowering make span in grid

workflow scheduling. One such method was

presented by Yu et al. [9], and it involves splitting a

workflow into sub-processes based on

synchronization tasks and then allocating a

common deadline to each of these sub-processes.

As a result, we aim to keep each partition's deadline

in mind while minimizing its associated costs. The

data transport and grid resource utilization costs are

taken into account in this early method. Prior to the

advent of cloud computing, scientific workflows

were often implemented in the grid, and many

years of research and development went into grid

workflow scheduling, yielding a variety of

methodologies. However, it is possible that these

methods can't be used to schedule operations in the

cloud due to the dissimilarities between the grid

and the cloud environment. That's why they're

focusing on cloud-based process scheduling

instead. In light of the constant development of

cloud infrastructure and cloud-based software, new

scheduling methods have emerged. This is because

the scheduling procedure now requires more data

about processes and cloud resources. Scheduling

tasks for a grid-based workflow typically depends

on three metrics: task execution time, grid resource

wait time, and file staging or data transfer time [5].

Specific problems, such as resource competition

[6], fault tolerance [7], and dependability [8], may

need additional metrics or information, which may

be used by various strategies. Users are paid for

using the cloud's shared pool of computing

resources, which may include both physical servers

and virtual machines, on an as-needed basis. With

the entire execution cost now becoming a more

crucial statistic, the three traditional KPIs are no

longer adequate. In order to determine what

scheduling data is unique to cloud computing, this

section examines numerous cloud workflow

scheduling strategies. In order to show how various

methods have developed through time, we provide

them in chronological sequence. Fewer strategies

address execution cost in utility grid, although

several concentrate on lowering make span in grid

workflow scheduling. One such method was

presented by Yu et al. [9], and it involves splitting a

workflow into sub-processes based on

synchronization tasks and then allocating a

common deadline to each of these sub-processes.

As a result, we aim to keep each partition's deadline

in mind while minimizing its associated costs. The

data transport and grid resource utilization costs are

taken into account in this early method.

Bettencourt and Madeira [14] devised the "HCOC"

method in 2011 to plan cloud processes within

deadlines while decreasing compute cost. The

method is based on a hybrid cloud architecture,

which consists of both a private cloud with diverse

resources and a public cloud (unlimited) resources.

As a first step in developing a strategy for the

private cloud, we use "PCH," a grid workflow

scheduling approach [15] that accounts for

execution time and data transfer. If the current

schedule seems like it may miss the deadline, a

rescheduling event is triggered to choose and

redistribute workloads to public cloud resources.

When choosing resources from the public cloud,

we look at things like cost, performance, and the

number of available CPU cores. Cloud resources

that are idle while waiting for incoming data to be

sent incur an opportunity cost, as the authors point

out [16]. However, this was an oversight in the

HCOC algorithm. In Table 1, we compare and

contrast the various cloud workflow scheduling

strategies and the cloud execution model they

recommend. Due to their importance in

determining both cost and make span, the metrics

of task execution time, compute cost, and data

transfer time are widely used throughout the

majority of the approaches shown here. The next

section discusses the significance of the remaining

five to contemporary cloud computing.

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

Vol.14, Issue No 2, 2024

876

Table 1: Summary of the information utilized by

cloud workflow scheduling techniques

3 Discussion on Information Utilized in

Workflow Scheduling
Not as much focus has been placed on the fourth

statistic, which is the cost of moving data into and

out of the cloud, as there has been on the other

three. The assumption made by each method may

determine whether or not this data is included.

Infrastructure-as-a- Windows Azure [22] and

Amazon Data transfers to and from EC2 [20] cloud

data centres are cheap. Assuming that a process

execution only occurs in a single cloud, this cost

will be spent mostly when taking data back out of a

cloud data centre once the workflow has

completed. Because data may need to be

transported from cloud centre to private resources

during execution and vice versa, the cost of

executing a workflow in a hybrid cloud might vary

depending on the data dependencies between jobs.

Costs associated with transporting data across

providers become more convoluted when operating

in an "interclub" [23] environment, when a process

is completed employing resources from numerous

cloud providers. However, the volume of data

delivered during an operation might also affect the

final price. Therefore, the cost of data transmission

must be included into the scheduling mechanism of

a system that primarily supports data-intensive

activities.

Two of the more complex methods discussed in

this study (PBTS and IC-PCP) account for the time

value of money spent on virtual machines. If the

majority of the jobs in a workflow have execution

periods that are less than the charging period, then

this is an important decision to make. In such case,

the assigned VMs result in underutilization and

greater costs for customers during non-peak times

[17, 21]. In contrast, as of the year 2013, both

Windows Azure and Google Compute Engine

impose a per-minute fee on their virtual machines.

Due to the reduced charge duration, the benefits of

taking charge period into account [21] are less, and

it may not be worthwhile to build such

sophisticated scheduling algorithms. However,

other cloud providers, such Amazon EC2, continue

to charge customers on an hourly basis for their

service. Until the majority of cloud providers

switch to a shorter billing cycle, thinking about the

charge term may be helpful. Shorter billing cycles

make it more convenient to assign a virtual

machine for a limited time to complete a modest

activity at a lower overall cost. However, this might

result in unnecessary costs. The time and resources

needed to boot up a virtual machine are factors to

think about, as noted in [3, 16, and 17]. Despite the

fact that a virtual machine's image may be stored in

the cloud, it still needs some time to boot the

operating system before it can be used to perform a

job [3]. There may also be a period of idle waiting

as the machine awaits the transmission of input

data before execution can begin [16]. These

complications add unnecessary expense and delay

to an operation. When deciding whether to create a

new virtual machine (in order to achieve a

deadline) or to terminate one, the scheduler must

take this overhead into account (to reduce cost

when it is no longer required).

4 Information Requirements for Cloud

Workflow Scheduler
Ultimately, the execution time, data transfer time,

and compute cost is the three most important

metrics that must be supplied for a Kepler system

workflow scheduler implementation in order to

estimate cost and make span. In addition to

equating execution time with virtual machine ratio

of performance to job size (in MIPS) and overall

task size (in millions of instructions) [16]. A

second option is for the scheduler to keep track of

the amount of time it takes to complete each job on

each virtual machine internally (or as part of

provenance) in order to calculate estimated task

completion times. Schedulers may provide

conservative estimates of transfer times by

recording information about the amount of the data

being transmitted and the capacity of network

connections [6]. To aid in planning of data-

intensive operations, it is helpful to have the costs

associated with transporting data to and from each

cloud provider in each availability zone (or area).

The scheduler needs access to the number of cores

set for each virtual machine instance type in order

to take advantage of workflow parallelism. To

facilitate a distributed programming paradigm, it is

necessary to have as many virtual machines as the

number of tasks. Users may set this value in a

parameter associated with the task actor. Although

not explicitly addressed in any study provided here,

it is important to keep tabs on the time it takes to

start various kinds of virtual machines in order to

rationalize resource allocation and release [3]. The

scheduler is a potential location for including this

monitoring. Finally, we think that it may not be

essential throughout the use fee time. As more

cloud service providers provide shorter billing

cycles, the benefits of this feature may no longer be

sufficient to cover the costs associated with

developing and implementing it.

5 Conclusions and Future Work

In this research, we analyze the requirements of a

workflow scheduler and draw conclusions on what

the Keller system environment should provide. The

value of various forms of data in the present-day

environment of cloud computing is examined.

Based on our work developing a prototype

scheduler in the Kepler-based tool "Nimrod/K" [6,

24, 25], "Nimrod Director" [26] uses this scheduler

to take care of scheduling process actors onto

computational resources. A cloud-based process

scheduler may be implemented in the Kepler

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

Vol.14, Issue No 2, 2024

877

system, and this may be a viable alternative. The

prototype scheduler, however, was designed for a

grid environment and hence did not take into

account this novel characteristic of cloud

computing. Furthermore, it is possible that the

Kepler system may not immediately provide access

to some of the information described in this work,

such as compute cost, data transmission cost, and

the number of cores in each virtual machine. In the

real implementation, it may be necessary to add an

extra part to collect such data. Several approaches,

including those discussed in this research, makes

assumptions about the information and concerns

unique to the workflow and cloud execution

settings, such as task need and user interaction [10].

As a follow-up, we're doing a thorough literature

review to compile a taxonomy that may guide

future innovation in cloud workflow scheduling

methods and tools.

References
[1] B. Ludäscher, I. Altintas, C. Berkley, D.

Higgins, E. Jaeger, M. Jones, E. A. Lee, J. Tao, and

Y. Zhao, "Scientific workflow management and the

Kepler system," Concurr. Comput. : Pact. Expert.

vol. 18, pp. 1039-1065, 2006.

[2] E. Deelman, D. Gannon, M. Shields, and I.

Taylor, "Workflows and e-Science: An overview of

workflow system features and capabilities," Future

Generation Computer Systems, vol. 25, pp. 528-

540, 2009.

[3] G. Mates, W. Gentzsch and C. J. Ribbens,

"Hybrid Computing—Where HPC meets grid and

Cloud Computing," Future Generation Computer

Systems, vol. 27, pp. 440-453, 2011.

[4] Kepler User Manual. Available: https://kepler-

project.org/users/documentation Accessed January,

2014.

[5] J. Yu, R. Buyya and K. Ramamohanarao,

"Workflow Scheduling Algorithms for Grid

Computing," in Metaheuristics for Scheduling in

Distributed Computing Environments, ed, 2008, pp.

173-214.

[6] S. Smanchat, M. Indrawan, S. Ling, C. Enticott,

and D. Abramson, "Scheduling parameter sweep

workflow in the Grid based on resource

competition," Future Generation Computer

Systems, vol. 29, pp. 1164-1183, 2013.

[7] K. Plankensteiner, R. Prodan and T. Fahringer,

"A new fault tolerance heuristic for scientific

workflows in highly distributed environments based

on resubmission impact," in Proceedings of the 5th

IEEE International Conference on e-Science (e-

Science '09), Oxford, UK, 2009, pp. 313-320.

[8] Y. Tao, H. Jin, S. Wu, X. Shi, and L. Shi,

"Dependable Grid Workflow Scheduling Based on

Resource Availability," J. Grid Comput., vol. 11,

pp. 47-61, 2013.

[9] J. Yu, R. Buyya and C. K. Tham, "Cost-based

scheduling of scientific workflow applications on

utility grids," in Proceedings of the First

International Conference on e-Science and Grid

Computing, 2005, pp. 140-147.

[10] K. Liu, "Scheduling algorithms for instance-

intensive cloud workflows," PhD Thesis, Faculty of

Information and Communication Technologies,

Swinburne University of Technology, 2009.

